Bone marrow basics
- Hematopoiesis
- Bone marrow structure
- Obtaining bone marrow
- Interpreting bone marrow
<table>
<thead>
<tr>
<th>Bone Marrow</th>
<th>Bone Marrow</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>100%</td>
</tr>
<tr>
<td>- Upper Lims</td>
<td>11.44%</td>
</tr>
<tr>
<td>- Lower Lims</td>
<td>38.76%</td>
</tr>
<tr>
<td>- Ribs</td>
<td>7.34%</td>
</tr>
<tr>
<td>- Head</td>
<td>6.93%</td>
</tr>
<tr>
<td>- Spine</td>
<td>14.68%</td>
</tr>
<tr>
<td>- Sternum</td>
<td>1.38%</td>
</tr>
<tr>
<td>- Pelvis</td>
<td>16.28%</td>
</tr>
</tbody>
</table>

Bone Marrow

- **Total** 100%
 - Upper Lims 11.44%
 - Lower Lims 38.76%
 - Ribs 7.34%
 - Head 6.93%
 - Spine 14.68%
 - Sternum 1.38%
 - Pelvis 16.28%
Bone Marrow

<table>
<thead>
<tr>
<th>Location</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>100%</td>
</tr>
<tr>
<td>Upper Lims</td>
<td>11.44%</td>
</tr>
<tr>
<td>Lower Lims</td>
<td>38.76%</td>
</tr>
<tr>
<td>Ribs</td>
<td>7.34%</td>
</tr>
<tr>
<td>Head</td>
<td>6.93%</td>
</tr>
<tr>
<td>Spine</td>
<td>14.68%</td>
</tr>
<tr>
<td>Sternum</td>
<td>1.38%</td>
</tr>
<tr>
<td>Pelvis</td>
<td>16.28%</td>
</tr>
</tbody>
</table>

Architecture of bone marrow

Vascular space
- Central artery -> carry food O_2 to hematopoietic tissue
- Central vein -> carry waste product, hematopoietic cell to circulation

Cellular compartment
- Hematopoietic tissue
- Reticular cells: reticular fiber for hematopoietic cell attachment
- Adipose cell (fat cells)
Architecture of bone marrow

Compact Bone & Spongy (Cancellous Bone)

- Lacunae containing osteocytes
- Lamellae
- Canaliculi
- Osteon
- Haversian canal
- Volkmann’s canal

Bone Marrow

- Volume: 30-50 mL/Kg of body weight
- Composition (Red : Yellow)
 - Hemopoietic compartment (Hemopoietic cell)
 - Non-hemopoietic compartment
 - stromal cell
 - vascular nerves
 - reticulum
 - fat cell
- Adult (Cell : Fat cell) ~ 1:1
Bone marrow

Stromal
- Indirectly involved in hematopoiesis.
- Provide the hematopoietic environment
 - by parenchymal cell,
 - fibroblast (reticular connective tissue)
 - macrophage
 - adipocyte
 - osteoblast
 - blood vessels (sinusoid)

Bone marrow

Marrow barrier
- Inhibit the immature cell leaving from the bone marrow.
- Mature cell have the membrane protein for endothelial cell attachment.

Bone marrow

Stem cell
- Multipotent stem cell.

Type of the stem cell
- Hematopoietic stem cell
- Mesenchymal stem cell
- Endothelial stem cell
1. Red marrow
 : cellularity (hematopoietic cell/fat cell) = 1:1
 : found in area which active marrow,
 : particularly in children marrow

2. Yellow marrow
 : cellularity < 1:1
 : found in area which decrease (non-active) marrow,
 : particularly in older marrow
Different patterns of Hematopoiesis

A Normal
B Thal
C AA
D MF

Normal Bone Marrow
Bone Marrow Activity

Bone marrow examination

Refers to pathologic analysis from the BM

BM biopsy and aspiration

For diagnosis

- Leukemia
- MM
- Anemia
- Pancytopenia
Objective of Bone Marrow Examination

- **To evaluate hematopoiesis**
- To diagnose malignancy of primary and metastatic origin

- **To determine the cause of infection**
- To evaluate the progression of some hematologic diseases

To response of the marrow to treatment follow up

To primary diagnosis of systemic diseases

Miscellaneous

To evaluate hematopoiesis

1. Primary diagnosis of hematolympoid malignancies
 - Acute leukemias
 - Chronic myeloproliferative disorder
 - Chronic lymphoproliferative disorder
 - Myelodysplastic syndromes
 - Hodgkin and non-Hodgkin lymphomas
 - Multiple myeloma

2. Staging of lymphoid malignancies and solid tumors

To determine the cause of infection

- Mycobacterium and fungal infections
- Granulomas
- Unknown infection agents using culture and special stains
- Hemophagocytic syndrome
Objective of Bone Marrow Examination

- Follow up to treatment
- Post chemotherapy and radiation
- Post bone marrow transplant

Indication for Bone Marrow Studies

1. Unexplained anemia/erythocytosis
2. Unexplained leukocytosis/leukocytopenia
3. Appearance of immature or abnormal cell in circulation
4. Unexplained thrombocytosis/thrombocytopenia
5. Leukemia
6. Infiltration disease; Cancer metastasis, TB
7. Fever unknown origin (FUO)

Contraindication for Bone Marrow Studies

Coagulopathy
- Factor activity > 50%

Thrombocytopenia

Skin infection or recent radiotherapy at sampling sites

Bone marrow disorders
- Osteomyelitis
- Osteogenesis imperfecta

Obtaining Bone Marrow

- Sternum
- Tibia
- Posterior iliac crest
- Anterior iliac crest
Equipments

Preparation Marrow film

1. Two cover slips
2. Smearing
3. Squashing
Types of marrow specimen

Aspirated sample: the best for
- cytologic morphology
- cytochemical staining

1. Aspirate
 - Cytogenetic
 - Immunologic marker
 - Microbiology
 - Microscopic marrow examination
 - Iron storages
 - Cytochemical stain

2. Biopsy sample: the best for
 - evaluation of marrow cellularity
 - evaluation marrow involvement by the proliferative cells
 - evaluation marrow structure

Bone Marrow Specimens
Bone Marrow Specimens

2. Trephine biopsy
 - Imprint (touch prep)
 - microscopic marrow examination
 - Histochemical & Immunologic stain
Bone Marrow Examination

1. Cellularity
2. Differential cell count
3. Myeloid:Erythroid ratio (M:E ratio)
4. Iron accumulation

Bone Marrow Cellularity

Marrow Hypoplasia

Marrow Hyperplasia

Bone Marrow Examination

1. Cellularity
 Cellularity is a hematopoietic cell/fat cell ratio
 : Normal cellularity = 1
 : Cellularity > 1 refer as “Marrow Hyperplasia”
 : Cellularity < 1 refer as “Marrow Hypoplasia”
 The mostly evaluated from biopsy specimen

2. Differential cell count
 - 500-1000 cells had been counted
Normal Bone Marrow

Granulocytic series (65%) (M)
Erythrocytic series (20%) (E)
Lymphocyte (10%)
Others (5%)

Myeloid : Erythroid = 2:1-4:1

M:E Ratio

- Megakaryocyte
- R.E. Cell (Histiocyte)
- Monocyte, Plasma cell
- Mitotic cell
 - Ostioblast, Ostiocyte
 - Tissue eosinophil, Mast cell
 - Recticulin fiber, Fat cells
3. Myeloid/Erythroid ratio (M/E ratio)
 - Normal M:E ratio responsible by age
 - At birth = 3-4.5
 - Up to 1 month 3-4.5
 - Children = 1.5-4
 - Adult = 2-4

4. Iron Stores
 - Storage iron is “hemosiderin”
 - It contained by nucleated erythroid cell
 - Unstained -golden-yellow granules
 - Wright’s stain- brownish-blue granules
 - Prussian blue is the mostly stain for marrow iron storage
 - Iron stores is benefit for evaluation of anemia
Abnormal results

Anemia
- Iron deficiency anemia
- Sideroblastic anemia
- Megaloblastic anemia
- Aplastic anemia

Leukemia

Multiple Myeloma
Hodgkin's disease
Lymphoma

Abnormal results

Metastatic Bone Cancer
Macroglobulinemia
Agammaglobulinemia
Myelofibrosis
Collagen disease
Infection

Aplastic anemia

Leukemia
Tuberculosis infection

Bone Marrow Iron Stores

Grading Iron Stores

- 0 - No stainable iron
- 1+ - Small intracellular iron stores using oil objective
- 2+ - Small, sparse intracellular iron particles at low power
- 3+ - Numerous small intracellular iron particles
- 4+ - Larger particles with a tendency to aggregate into clumps
- 5+ - Dense, large clumps
- 6+ - Very large clumps and extracellular iron

- Perl's Prussian blue
- Best performed on bone marrow aspirate smears
- Intracellular stores should be evaluated, extracellular stores can be confused with artifact
- Most intracellular iron is in macrophages, a small amount in erythroblasts (sideroblasts)
- Normally 20-50% of erythroblasts are sideroblasts
- Ringed sideroblasts are atypical, with iron in mitochondria forming a ring around nucleus

Perl's Prussian Blue
Sideroblastic anemia

Bone Marrow Reticulin

Grading Reticulin Content

- 0: No reticulin fibers
- 1+: Occasional fine individual fibers
- 2+: Fine fiber network throughout section, no coarse fibers
- 3+: Diffuse fiber network with scattered thick coarse fibers, no collagen
- 4+: Diffuse often coarse fiber network with areas of collagenization

- Reticular fibers formed by fibroblasts
- Normally few, primarily perivascular and periendosteal
- Increased in many conditions, may be associated with collagen
- Cause “dry tap” aspirate
- Evaluated by Gordon-Sweet and trichrome stain
- Interpretation must avoid areas of crush artifact and perivascular regions

Bone Marrow Artifacts

<table>
<thead>
<tr>
<th>Bone Marrow Aspirate</th>
<th>Bone Marrow Biopsy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poor staining</td>
<td>Aspiration artefact</td>
</tr>
<tr>
<td>Inadequate particles</td>
<td>Suboptimal sectioning</td>
</tr>
<tr>
<td>Cell crushing and distortion</td>
<td>Poor staining</td>
</tr>
<tr>
<td>Contaminated stains</td>
<td>Biopsy of previous biopsy site</td>
</tr>
<tr>
<td>Thick smears</td>
<td>Subcortical specimen</td>
</tr>
<tr>
<td>Uneven cell distribution</td>
<td>Crushed specimen</td>
</tr>
<tr>
<td>Clotted specimen</td>
<td>Inadequate fixation</td>
</tr>
<tr>
<td></td>
<td>Excessive decalcification</td>
</tr>
<tr>
<td></td>
<td>Inadequate decalcification</td>
</tr>
</tbody>
</table>
Bone Marrow Artifacts

Cytochemical Stains

<table>
<thead>
<tr>
<th>Stain</th>
<th>Primary Reactivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Myeloperoxidase (MPO)</td>
<td>Myeloid primary granule enzyme, best granulocyte marker, relatively unstable, fades</td>
</tr>
<tr>
<td>Sudan black</td>
<td>Lipid in myeloid primary granules, good granulocyte marker, very stable, does not fade</td>
</tr>
<tr>
<td>Naphthol ASD chloroacetate esterase</td>
<td>Myeloid primary granule enzyme, mast cells, less sensitive and specific than MPO</td>
</tr>
<tr>
<td>α-Naphthyl acetate esterase</td>
<td>Enzyme in monocytes/macrophages (fluoride-inhibited), megakaryocytes (fluoride-resistant), some T-cell subsets</td>
</tr>
<tr>
<td>β-Naphthyl butyrate esterase</td>
<td>Enzyme in monocytes/macrophages (diffuse), T lymphocytes (focal, paranuclear)</td>
</tr>
<tr>
<td>Acid phosphatase</td>
<td>Ubiquitous distribution, tartrate-resistant in HCL (TRAP)</td>
</tr>
<tr>
<td>Periodic acid-Schiff</td>
<td>Glycogen stain, useful in diagnosis of ALL and erythroblastemia</td>
</tr>
<tr>
<td>Giemsa/toluidine blue</td>
<td>Metachromatic stain, mast cells and basophils</td>
</tr>
<tr>
<td>Prussian blue</td>
<td>Erythroblast and storage iron, loss during decalcification</td>
</tr>
</tbody>
</table>

Immunophenotypic Analysis

Cytospin or Tissue Section

Immunohistochemical Stains

Flow Cytometry
Flow Cytometry

- Cells are incubated with fluorochrome labeled MoAbs
- Cells are passed in “single file” through highly focused laser beam
- Different fluorochromes emit light at different wavelengths
- Emitted light analyzed by computer and plotted on a histogram
- Data analysis shows number and immunophenotypic characteristics of the cell population

Cluster Designations

- International Workshops on Human Leukocyte Differentiation Antigens
- Sponsored by World Health Organization
- Hybridoma technology, antibodies shared, common reactivity identified, antigens defined
- 8th Workshop - Adelaide, Australia, 2004
- CD1 - CD247
- General conclusions
 - Complex interrelationships
 - Few lineage-specific antigens

Immunophenotypic Analysis